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Abstract. We study an analytically tractable model with long-range interactions for which an out-of-
equilibrium very long-lived coherent structure spontaneously appears. The dynamics of this model is indeed
very peculiar: a bicluster forms at low energy and is stable for very long time, contrary to statistical me-
chanics predictions. We first explain the onset of the structure, by approximating the short time dynamics
with a forced Burgers equation. The emergence of the bicluster is the signature of the shock waves present
in the associated hydrodynamical equations. The striking quantitative agreement with the dynamics of the
particles fully confirms this procedure. We then show that a very fast timescale can be singled out from a
slower motion. This enables us to use an adiabatic approximation to derive an effective Hamiltonian that
describes very well the long time dynamics. We then get an explanation of the very long time stability of
the bicluster: this out-of-equilibrium state corresponds to a statistical equilibrium of an effective mean-field
dynamics.

PACS. 05.20.-y Classical statistical mechanics – 05.45.-a Nonlinear dynamics and nonlinear dynamical
systems

1 Introduction

The Hamiltonian Mean Field model (HMF) has attracted
much attention in the recent years as a toy model to study
the dynamics of systems with long-range interactions, and
its relation to thermodynamics [1–4]. The HMF model
describes an assembly of N fully coupled rotators, whose
Hamiltonian is:

H =
N∑

i=1

p2
i

2
+

c

2N

N∑
i,j=1

cos(θi − θj), (1)

where θi is the angle of the ith planar rotator with a fixed
axis. As the interaction only depends on the angles of the
rotators, this model can alternatively be viewed as repre-
senting particles that move on a circle, whose positions are
given by the θi and interact via an infinite-range force. If
c is negative, the interaction among rotators is ferromag-
netic, corresponding to an attractive interaction among
particles. When c is positive, the interaction among ro-
tators is antiferromagnetic and repulsive in the particle
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interpretation. In this article, we will focus our study on
this latter case, and put c = 1.

As first noticed in reference [2], this model has a very
interesting dynamical behavior. In contrast to the statisti-
cal mechanics predictions, a bicluster forms at low energy
(see Fig. 1), for a special, but wide class of initial condi-
tions: it appears as soon as the initial velocity dispersion
of the particles is small, for any initial spatial distribu-
tion. This clustering phenomenon and its unexpected de-
pendence on initial conditions were studied in great de-
tail in reference [5], but remained essentially unexplained.
Several features of the dynamics were numerically studied
and it has been in particular emphasized that the energy
temperature relation is modified: although still linear, the
slope in the molecular dynamics simulations is different
from the theoretical prediction. No sign in the numer-
ics was found of the decay to the constant density pro-
file predicted in the microcanonical and canonical ensem-
bles. On the contrary, recently performed simulations [6]
with a smaller number of particles have shown a long-time
degradation of the bicluster, suggesting its transient non-
equilibrium nature. The question of the time asymptotic
stability of the bicluster, in the limit of an infinite number
of particles, remains however open and will be discussed
in the conclusions.
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Fig. 1. Bicluster formation: short-time evolution of the par-
ticle density in grey scale: the darker the grey, the higher the
density. Starting from an initial condition with all the parti-
cles evenly distributed on the circle, one observes a very rapid
concentration of particles, followed by the quasi periodic ap-
pearance of “chevrons”, that shrink as time increases.

We will consider in this work two different theoreti-
cal approaches that lead to an analytical explanation of
the clustering process and of the long time stability of
the structure. In Section 2, in order to explain the short
time bicluster formation, we first propose a hydrodynam-
ical description that links Hamiltonian (1) to a forced
Burgers equation (these results were shortly presented
in a previous brief note [7]). This striking phenomenon
is then described in Lagrangian coordinates, giving rise
to intersections of trajectories and formation of high (or
even infinite) particle densities. We then solve in Section 3
this equation, using extensively the method of character-
istics. Beyond the theoretical interest in such structures
for Hamiltonian systems, we will show some connections
of this problem with other subjects; namely, active trans-
port in hydrodynamics, and the formation of caustics in
the flow of the associated Burgers equation.

Section 4 presents the second approach, which is par-
ticularly powerful for explaining the long-time evolution
of the bicluster [8]. The dynamics involves two well sepa-
rated time-scales. Using a variational approach, we will
show how to construct an effective Hamiltonian where
all fast oscillations are averaged out. Not only this effec-
tive dynamics accurately represents the one of the origi-
nal Hamiltonian but, in addition, the complete statistical
thermodynamics can be easily derived in the microcanon-
ical and canonical ensembles. It predicts the existence of
the bicluster as an equilibrium state and the microcanoni-
cal temperature energy relation found in the numerical ex-
periments of reference [5]. As the relaxation towards equi-
librium in the effective Hamiltonian of both the density

profile and the velocity distribution is slow, one observes
an out-of-equilibrium state in the original Hamiltonian,
which can be studied using the effective Hamiltonian. The
long lifetime of the bicluster can therefore be interpreted
by the fact that it is in some sense close to an equilibrium
state of an effective Hamiltonian representing the long-
time motion. Section 5 is devoted to some conclusions and
perspectives of future developments.

2 Hydrodynamical description
at zero temperature

2.1 Introduction

To describe the initial clustering process, we consider the
associated Vlasov equation, which can be rigorously de-
rived in the thermodynamic limit N −→ ∞ [9,10]. Denot-
ing by f(θ, p, t) the one particle distribution function, we
have:

∂f

∂t
+ p

∂f

∂θ

−
[

1
2π

∫ +∞

−∞
du
∫ 2π

0

dα f(α, u, t) sin(θ − α)
]
∂f

∂p
= 0.

(2)

Let us define as follows, a density

ρ(θ, t) =
∫ +∞

−∞
f(θ, p, t) dp (3)

and a velocity field

ρ(θ, t)v(θ, t) =
∫ +∞

−∞
pf(θ, p, t) dp. (4)

As the numerical simulations reported in reference [5] have
shown that the bicluster appears when the velocity disper-
sion is small, we will consider here the zero temperature
approximation, i.e. we neglect the velocity dispersion and
consider the ansatz f(θ, p, t) = ρ(θ, t)δ(p− v(θ, t)), where
δ is the Dirac function. The Vlasov equation (2) can con-
sequently be simplified to

∂f

∂t
+ p

∂f

∂θ
− F (θ, t)

∂f

∂p
= 0 (5)

where

F (θ, t) =
1
2π

∫ 2π

0

dα ρ(α, t) sin(θ − α). (6)

The sum of the time derivative of equation (3) and the
θ-derivative of equation (4), leads to

∂ρ

∂t
+
∂(ρv)
∂θ

=
∫ +∞

−∞

(
∂f

∂t
+ p

∂f

∂θ

)
dp

=
∫ +∞

−∞
dp F (θ, t)

∂f

∂p
= 0. (7)
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We obtain therefore the equation which accounts for mass
conservation

∂ρ

∂t
+
∂(ρv)
∂θ

= 0. (8)

Using the time derivative of equations (4) and (8), we
obtain

∂ (ρv)
∂t

= ρ

(
∂v

∂t
+ v

∂v

∂θ

)
− ∂(ρv2)

∂θ
· (9)

However, the time derivative of the left-hand-side
gives also

∂ (ρv)
∂t

=
∫ +∞

−∞
p
∂f

∂t
dp

= −
∫ +∞

−∞
p2 ∂f

∂θ
dp+ F (θ, t)

∫ +∞

−∞
p
∂f

∂p
dp

= −v2 ∂ρ

∂θ
− ρ

∂v

∂θ
2v + F (θ, t)ρ(θ, t). (10)

Equations (9) and (10) lead finally to the following Euler
equation without pressure term:

∂v

∂t
+ v

∂v

∂θ
=

1
2π

∫ 2π

0

dα ρ(α, t) sin(θ − α). (11)

Equations (8) and (11) show that the dynamics of the
model at low temperature can be mapped onto an active
scalar advection problem.

2.2 Linear analysis

Linearizing equations (8) and (11), by assuming small
velocities (v � 1) and almost uniform density (ρ =
1 + ρ1(θ, t) with ρ1 � 1), we are left with:

∂ρ1

∂t
+
∂v

∂θ
= 0 (12)

∂v

∂t
=

1
2π

∫ 2π

0

ρ1(α, t) sin(θ − α), (13)

a system which is easily solved by a spatial Fourier series
development. Assuming a zero initial velocity field, we get

ρ1(θ, t) =
√

2 vm cos θ cosωt (14)
v(θ, t) = vm sin θ sinωt , (15)

where the time-scale of the oscillation is given by the in-
verse of a sort of “plasma frequency” ω =

√
2/2, which

describes, as in the Poisson-Boltzmann case, the instabil-
ity of the uniform density state [11]. In the attractive case
(c = −1 in Hamiltonian (1)), this time scale would con-
trol the depart from the initial uniform density towards
the formation of the density profile of the single cluster
that appears at low temperature [12,13], in analogy with
Jeans instability in gravitational systems [14].

This linear analysis is, however, not sufficient to ex-
plain the formation of the bicluster and we have to carry
out a non linear analysis.

2.3 Non linear analysis

This analysis relies on the existence of two time-scales in
the system: the first one is intrinsic and corresponds to
the inverse of the “plasma frequency” ω; the second one is
connected to the energy per particle e. When the energy
is sufficiently small, these time-scales are very different,
and it becomes possible to use averaging methods. The
presence of two well separated time-scales also explains,
in some sense, the appearance of the bicluster in the low
energy limit.

We introduce therefore a long time-scale τ = εt, with
ε = vm/

√
2 =

√
2e, and we look for solutions of the fol-

lowing form:

v(θ, t) = vm sin θ sinωt+ ε u(θ, τ). (16)

In order to evaluate the force on the r.h.s. of equation (11)
in the nonlinear regime, we will use expressions (14)
and (15), given by the linear analysis. Indeed, due to the
special form of the Hamiltonian, the force depends only
on the first Fourier component of the density. Hence, our
hypothesis amounts to assume that the sinusöıdal behav-
ior of the density, found in the linear regime, holds the
same in the non-linear regime: the results presented be-
low confirm the validity of this assumption.

In analogy with studies of the wave-particle interac-
tion in plasma physics [15,16], our system may be seen
as a bulk of particles interacting with waves that are sus-
tained by the bulk itself. Here, the wave is created by the
small density and velocity oscillations already present in
the linear analysis. In the low energy regime, the phase
velocity of the wave with the plasma frequency ω is much
higher than the velocities of the bulk particles, causing
a very small wave-particle interaction strength: the wave
has therefore a very long life-time. This also explains the
quality of the linear approximation for the force that we
have used in the Euler equation (11).

Introducing expression (16) in equation (11), terms to
first order in ε disappear by construction. Order ε2 terms
give:

∂u

∂τ
+ u

∂u

∂θ
+ 2 sin θ cos θ sin2 ωt

+
(

sin θ
∂u

∂θ
+ u cos θ

)√
2 sinωt = 0. (17)

Averaging over the short time scale t, we obtain:

∂u

∂τ
+ u

∂u

∂θ
= −1

2
sin 2θ (18)

which is a spatially forced Burgers equation without vis-
cosity, describing the motion of fluid particles in the po-
tential V (θ) = −1/4 cos 2θ.

The Burgers equation has been studied in many dif-
ferent contexts by mathematicians interested in a pres-
sureless description of fluid motion, and by physicists in
the context of ballistic aggregation models [17]. In partic-
ular, the forced Burgers equation has been very carefully
studied from a mathematical viewpoint [18]. Cosmologists
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Fig. 2. Shock dynamics. Phase space portrait of N = 104

particles, which at τ =
√

2et = 0 are uniformly distributed in
space (dotted line) with a small sinusoidal velocity profile, not
visible in the figure. The resulting energy is e = 6.7 × 10−4.
Velocity profiles u(θ) are then shown at τ = π/4 (dashed line),
τ = 3π/8 (dashed-dotted line) and τ = τs = π/2, the first
shock time (solid line). Only half the space is shown since the
curves are π-periodic.

have proposed a very interesting adhesion model that uses
Burgers-like equations to explain structure formation in
the universe [19]. Moreover, this equation may be also
viewed as a nice model of active transport of the vorticity
field in fluid mechanics [20].

A well known property of the Burgers equation with-
out viscosity, is that the solution becomes multi-stream
after a finite time: the appearance of shocks (see Fig. 2)
in the velocity profile u(θ) corresponds to the creation of
singularities in the density profile (see Fig. 3). This is a
consequence of the two main assumptions: the medium is
supposed to be continuous and the temperature is set at
zero. Weakening either assumption would have smoothed
out the singularities. In the original discrete Hamiltonian
model, particles can cross and, after some time, those that
travel faster can be catched by the slower ones that lie
downstream, creating the spiral dynamics exemplified in
Figure 4. The particle density has a peak at the center
of the spiral (Fig. 3), and diverges at the peak position
in the N → ∞ limit at the shock time τs. The presence
of a shock at finite time in the forced Burgers equation
does not prevent the hydrodynamical description from re-
maining valid at longer times, when, moreover, several re-
peated shocks are observed at regular time intervals. We
will indeed show that it can adequately describe even the
long-time evolution. In addition, let us remark that it’s the
double well shape of the potential that forces the Burg-
ers equation, which is responsible for the formation of two
clusters. Starting from the initially uniform state, the par-
ticles will move around the bottom of the both wells and
the majority of them happen to be there simultaneously
at the shock time, creating therefore two coherent struc-
tures that after several oscillations form the bicluster at
long-time.

Fig. 3. Particle density ρ(θ) at τ = 0 (dotted line), τ = π/4
(dashed line), τ = 3π/8 (dashed-dotted line) and τ = τs = π/2
(solid line). The initial condition is the same as in Figure 2.
We clearly see the appearance of one of the two density peaks
of the bicluster.

Fig. 4. Spiral dynamics. Phase space portrait of N = 104

particles at τ = 500. The initial condition is the same as in
Figure 2.

3 Solution of the spatially forced Burgers
equation by the method of characteristics

The method of characteristics is the appropriate mathe-
matical tool to study more quantitatively the forced Burg-
ers equation (18), but it has also a direct physical meaning:
the characteristics correspond to the Lagrangian trajec-
tories of the Euler equation, and are therefore good ap-
proximations for the particle trajectories of the finite N
Hamiltonian system (1) when N � 1.

In the case of unidirectional nonlinear wave motions,
the method is standard and proceeds as indicated, for
example, in reference [21]. We obtain in this case the
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following pendulum equation for the characteristics θ(τ):

d2θ

dτ2
+

1
2

sin 2θ = 0 , (19)

with the initial conditions θ(0) = θ0 and θ̇(0) = 0. The
solution of the above equation can be easily derived [22]
and reads:

θ = arcsin [sin θ0 sn (τ +K0, sin θ0)] (20)

where K0 = K(sin θ0), K is the complete elliptic inte-
gral of the 1st kind, and sn the elliptic sine function.
Figure 5a shows the characteristics, i.e. the solutions of
equation (19) corresponding to different initial conditions
θ0 evenly distributed in [0, 2π] at t = 0 and with zero
initial velocity. One clearly sees their oscillatory behav-
ior inside one of the two wells of the effective potential
−1/4 cos 2θ, located at θ = 0, with a period 4K0 which
strongly depends on the initial position. Figure 5a empha-
sizes also that the characteristics cross themselves, and the
associated caustics are responsible for the enhancement of
the particle density field that forms the “chevrons”. The
time of the first divergence in the density τs is the time
of the first characteristic crossing and also the time of the
first shock in the velocity profile. The particles performing
a quasi-harmonic oscillatory motion in the bottom of the
well are the ones with shorter periods. The shortest period
is obtained in the harmonic limit 4K(0) = 2π, leading to
τs = π/2 for the time of appearance of the first shock. In
the original units, it reads

ts =
τs
ε

=
π√
8e

· (21)

This shock results in a singularity in Eulerian space
at the corresponding time. However this singularity dis-
appears immediately after forming and two singularities
of another kind arise in its place, which are the bound-
aries of the three streams region. The chevron is their
manifestation in the density profile. The shock time sin-
gularity is called A3 in Arnold’s classification [23,24] while
the “chevrons” singularity is of A2 type. The latter is the
boundary of structures and can exist at any moment of
time, whereas the former exist only when a chevron origi-
nates. The recurrence time for the appearance of chevrons
is tn = ts ∗ (2n−1) and the comparison with the numerics
shows a very good agreement.

Figures 5a and b show that the agreement is really
good not only at the qualitative but also at the quantita-
tive level. Only two features are missed by the Lagrangian
description. The fast oscillations of very small amplitude,
already hardly visible in Figure 5b, are of course totally
absent in the characteristics because of the averaging pro-
cedure used to get equation (18). One can also easily show
that the amplitudes of these fast oscillations are rapidly
decreasing with the increase of the number of particles
and is vanishingly small for N → ∞. The second point is
the presence of untrapped particles in Figure 5b, which is
a direct consequence of the oscillations of the height of the

Fig. 5. Panel (a) presents the characteristics of equation
(18) whereas panel (b) presents the trajectories of the par-
ticles of the Hamiltonian (1) with the same initial condition
as in Figure 2. One can see the three first appearances of the
“chevrons”. Two phenomena are not captured by the charac-
teristics: the small oscillations of the real trajectories (which
are almost invisible, but present in panel (b)), which are aver-
aged out, and the presence of untrapped particles, close to the
saddle-points of the effective −1/4 cos 2θ potential.

potential barriers. This effect is important only for highly
energetic particles whose trajectories in phase space are
close to the separatrix of the Kelvin’s cat eye of Figure 4.
However, as we will show in the next section, these par-
ticles do not take part in the creation of caustics (i.e. of
the chevrons of Fig. 1) which are generated only by the
particles close to the bottom of the wells.

3.1 The chevrons as caustics of the characteristics

We will now explain the shape of the “chevrons” (Fig. 1),
which correspond to zones of infinite density, i.e. to the
envelops of the characteristics, the so-called caustics. The
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family of the characteristics is defined by

F (τ, θ, θ0) = sin θ(τ, θ0) − sin(θ) = 0 (22)

in the plane (θ, τ) with the parameter θ0. The envelope
of this family would then be defined by the two following
equations

F (τ, θ, θ0) = 0 (23)
∂F

∂θ0
(τ, θ, θ0) = 0. (24)

However, it is not possible to extract θ0 as a function of
θ and τ from equation (24), in order to obtain a closed
expression F (τ, θ, θ0(τ, θ)) for the caustics. We will use
approximate expressions of F close to the shocks.

In the neighborhood of the shock, the trajectories can
be approximated by straight lines, with the following ex-
pression:

θ(τ, θ0) = v0 (τ −K0) (25)

where v0 = v(K0) is the speed of the particle at the bot-
tom of the potential well.

The envelope of this family of characteristics can
then be obtained [21] by solving the following system of
equations

θ(τ, θ0) = v0 (τ −K0) (26)

0 = v
′
0 (τ −K0) − v0K

′
0 (27)

where the primes denotes the derivative with respect
to θ0. Using the conservation of energy, we easily get
v0 = − sin θ0 and we thus obtain

τ = tan θ0 K
′
0 +K0 (28)

θ = − sin2 θ0
cos θ0

K
′
0. (29)

It is however possible to go further by using higher
order terms in the expression of θ given in equation (25),
i.e. by considering curves rather than simply straight lines.
We have thus

θ(τ, θ0) = θ(K0) +
dθ
dτ |K0

(τ −K0) +
1
2

d2θ

dτ2 |K0

(τ −K0)
2

+
1
6

d3θ

dτ3 |K0

(τ −K0)
3 + . . . (30)

= v0 (τ −K0) − v0
6

(τ −K0)
3 + . . . (31)

where we have replaced in equation (31) the derivatives by
their expressions. Let us note in particular that all deriva-
tives of even order vanish because of the parity property
of θ. Using the development of K0 at the same order, we

Fig. 6. Superposition of the caustics over the characteristics of
50 particles evenly distributed between −π/2 and π/2 at t = 0.
The analytical formula for the “chevrons” (Eqs. (32) and (33))
is superimposed (bold curves). The vertical dashed lines shows
the appearance time of the chevrons tn = ts ∗ (2n − 1).

finally end up with the next order approximation for the
caustics

τ = τs + 3aθ20 +
(

5b+
2a
3

)
θ40

+
(

7c+
4b
3

+
4a
15

− 8a3

3

)
θ60 +O(θ80) (32)

θ = 2aθ30 +
(
4b+

a

3

)
θ50

+
(

6c+
2b
3

+
31a
180

− 4a3

)
θ70 +O(θ90) (33)

where (a, b, c) = π
8

(
1, 11

48 ,
173
2880

)
.

It is possible to see in Figure 6 that the agreement is
excellent and that this procedure is really accurate to de-
scribe the first chevron. Moreover, one can check that be-
cause of the non isochronism of the oscillations, the more
energetic particles arrive too late in the bottom of the well
to take part to the creation of the caustics, i.e. the singu-
larity in the density space. Consequently, the untrapped
particles of the real dynamics, visible in Figure 5b, but
absent in the averaged dynamics of the associated Burg-
ers equation (see Fig. 5a), are irrelevant and do not affect
the dynamics of the caustic formation.

This is confirmed by Figure 7 where the caustics de-
termined by the Burgers’ approach are superimposed on
the real trajectories: the shape of the chevrons is very well
described. However, the time occurrence of the shock was
reduced by a factor 0.84. The reason, clarified in the next
section, is due to the renormalization of the oscillation
frequency ω, which modifies the oscillation period of the
particles. As shown below using a self-consistent proce-
dure, ω is reduced with respect to the plasma frequency
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Fig. 7. Superposition of the caustics over the trajectories of
100 particles evenly distributed between 0 and 2π at t = 0 for
an energy e = 3×10−6. The time occurrence of the shocks was
reduced by a factor 0.84 (see text).

√
2/2. As the potential height is inversely proportional to

ω this leads therefore to a faster appearence of the shocks.

As already mentioned, the time occurrence of the nth
shock is τn(θ0) = (2n − 1)τs which means that its shape
will be obtained simply by replacing in equation (26) K0

by (2n−1)K0. Therefore, the lowest order approximation
of the nth shock is

θ = 2a(2n− 1)
(

τ − τn
3a(2n− 1)

)3/2

(34)

θ ∝ (t− (2n− 1)ts)
3/2

√
2n− 1

(35)

where n is the number of appearence of the “chevron”.
The 1/

√
n factor accounts for the shrinking of the “che-

vrons” and the bolded line in Figure 6 shows that this
expression is particularly accurate.

Similar caustics are encountered in astrophysics, to ex-
plain the large scale structure of the universe: clusters and
super clusters of galaxies are believed to be reminiscent of
three dimensional caustics arising from the evolution of
an initially slightly inhomogeneous plasma [24,25].

3.2 Probability distribution

At this point, it would be important to calculate the den-
sity distribution in the vicinity of the singularity. For this
hydrodynamical approximation, this is fully determined
by the initial conditions, i.e. the initial velocity distri-
bution. Let us recall that we earlier found [5], that the
following analytical formula

P(θ) =
1
2π

(1 − log(2| sin θ|)) (36)

Fig. 8. Equilibrium distribution. Comparison between the nu-
merical results (diamonds) and the analytical formula (39)
(solid line) in the case e � 10−4. The dotted line corresponds
to the formula (36).

was an excellent approximation (see Fig. 8), even if we
didn’t have any theory for its derivation. Here using the
Burgers’ approach, let us obtain a similar result.

Along the particle trajectory, one has

θ̇ =

√
cos 2θ − cos 2θ0

2
· (37)

The time dt(θ) spent by a particle close to a position θ is
inversely proportional to its velocity θ̇(θ0). Therefore the
trajectory parametrized by θ0 (and initiated in θ0) gives
a contribution to the density

ρθ0(θ)dθ =
dt(θ)dθ∫ θ0

−θ0

dt(θ)
=

2
√

2 dθ
T (θ0)

√
cos 2θ − cos 2θ0

(38)

where T (θ0) is the period of the trajectory. Recalling that
the initial distribution is homogeneous in these numerical
computations, one obtains the probability density by av-
eraging over time the density of characteristics at a fixed
position. We obtain:

ρ(θ) ∝
∫ π

2θ

2
√

2 du
T (u)

√
cos 2θ − cos 2u

(39)

for θ = [0, π/2] whereas the whole distribution is obtained
by symmetry and π-periodicity.

Due to the numerous approximations, the agreement
for long time is not perfect, but equation (39) gives a good
result as shown by Figure 8. The disagreement is visible in
0 and π, i.e. close to the separatrix. Actually, as we will see
in the following, the amplitude of the effective potential
slightly oscillates; this allows the existence of untrapped
particles which smooth the density.
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As a conclusion, this hydrodynamical approach has
proved to be very successful, since it explains qualitatively
and quantitatively, for short times, the main features of
the bicluster formation. Nevertheless, the stability and the
long time behavior of the structure is not yet understood:
this is the object of the next section.

4 Long time evolution of the bicluster

Since the microcanonical and canonical thermodynamics
of the antiferromagnetic HMF model predicts a perfectly
homogeneous equilibrium state, the bicluster is a non equi-
librium structure. However, its long time stability, as well
as the fact that it is reached starting from a variety of
initial conditions suggest some statistical explanation.

In addition, we have learned from the previous sec-
tion that particle motion may be split into two parts: a
small amplitude rapid oscillation superimposed to a large
amplitude slow motion. The idea is thus to look for an
effective Hamiltonian dynamics which would only retain
the slow motion, and would be appropriate for a statistical
description.

4.1 The fast variables

The complete Lagrangian of the antiferromagnetic HMF is

L
(
θi, θ̇i

)
=

N∑
i=1

θ̇i
2

2
− 1

2N

∑
i,j

cos(θi − θj), (40)

and the equations of motion are obtained by minimizing
the action S =

∫
Ldt. Taking advantage of the two well

defined time scales, we introduce the following ansatz:

θi = θ0i (τ) + εfi(t, τ) (41)

where τ = εt and ε =
√

2e, as already defined in Sec-
tion 2.3. The fi’s represent the small rapid oscillations and
the θ0i the slow variables which we are finally interested
in. The idea is then to use a variational approach (least
action principle), first to obtain the equations of motion of
the fast variables fi, and then to reintroduce the solutions
into the action. In a second stage, averaging over the fast
time t, we will obtain a variational principle for the slow
variables. This approach, inspired by [26], has the double
advantage of allowing to obtain an Hamiltonian system
for the slow variables, and the one of exhibiting a natural
conservation law for this dynamics (the adiabatic invari-
ant). Appendix A briefly presents the use of method [26]
for a slowly modulated harmonic oscillator, in order to
emphasize its power for a very simple model, away from
the rather technical context presented here.

We first notice that since the energy of the system
is by definition of order ε2, the sums 1/N

∑
cos θ0i and

1/N
∑

sin θ0i , which represent the two components of the

magnetization vector in terms of the slow variables θ0i , are
of order ε. We thus define

εM0
1x =

1
N

∑
i

cos
(
θ0i + ψ

)
(42)

εM0
1y =

1
N

∑
i

sin
(
θ0i + ψ

)
(43)

where the phase ψ ∈ [0, π] is chosen such that the scalar
dynamical indicator of the clustering is

|M2| =

∣∣∣∣∣ 1
N

∑
i

exp
(
2iθ0i

)∣∣∣∣∣ =
1
N

∑
i

cos 2
(
θ0i + ψ

)
. (44)

We now introduce the ansatz (41) into the
Lagrangian (40), and develop the cosine up to order
ε2, obtaining the new Lagrangian L2 that depends on the
θ0i ’s, the fi’s and their time derivatives

L2 = L2

(
θ0i ,

dθ0i
dτ

, fi,
dfi

dt

)

=
ε2

2

∑
i

[(
dθ0i
dτ

)2

+ 2
dθ0i
dτ

dfi

dt
+
(

dfi

dt

)2
]

− ε2N

2

[
(M0

1x)2 + (M0
1y)2

]
+

ε

N

∑
i,j

fi sin (θ0i − θ0j )

− ε2

2N

∑
i,j

fifj cos(θ0i − θ0j ). (45)

From this expression, considering τ as a constant, we write
the equations of motion for the fast variables fi’s. We get

f̈i = M0
1x sin

(
θ0i + ψ

) −M0
1y cos

(
θ0i + ψ

)
− 1
N

∑
j

fj cos
(
θ0i − θ0j

)
. (46)

This is a linear second order equation, with constant coef-
ficients with respect to the fast time, whose solution thus
requires the diagonalization of the N ×N matrix

T = [Tij ] =
1
N

[
cos(θ0i − θ0j )

]
, (47)

which has only two non zero eigenvalues (see Appendix B)

ω2
± =

1 ± |M2|
2

· (48)

The eigenvectors corresponding to ω2
± are respectively

X+ =
[
cos(θ0i + ψ)

]
i=1...N

(49)

X− =
[
sin(θ0i + ψ)

]
i=1...N.

(50)

The general solution for the fi’s is therefore

fi(t, τ) =

[√
2A+ sin(ω+t+ ϕ+) − M0

1y

ω2
+

]
cos(θ0i + ψ)

+
[√

2A− sin(ω−t+ ϕ−) +
M0

1x

ω2−

]
sin(θ0i + ψ). (51)
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4.2 The slow variables

The previous solution for the fi suggests the following new
ansatz

fi =
[√

2A+(τ) sin(φ+(t)) + a+(τ)
]

cos(θ0i + ψ)

+
[√

2A−(τ) sin(φ−(t)) + a−(τ)
]

sin(θ0i + ψ) (52)

where φ±(t) are fast variables, and dφ±/dt, A±(τ),
and a±(τ) are slow variables. We introduce (52) in the
Lagrangian (45), and we average over the fast variables
φ±. Dropping the ε2 overall factor, the averaged La-
grangian reads

Leff =
1
2

N∑
i=1

(
dθ0i
dτ

)2

+
N

2

[
A2

+ω
2
+φ̇

2
+ +A2

−ω
2
−φ̇

2
−
]

−N

[
M0

1x
2 +M0

1y
2

2
+M0

1ya+ ω2
+ −M0

1xa− ω2
−

+
(
A2

+ + a2
+

) ω4
+

2
+
(
A2

− + a2
−
) ω4

−
2

]
· (53)

Due to averaging, since the variables φ± are cyclic, P±,
the conjugate momenta of φ±, are conserved quantities.
Their expression is

P± =
∂Leff

∂φ̇±
= NA2

±ω
2
±φ̇±. (54)

As the Lagrangian does not depend on the time derivatives
of A+, A−, a+, and a−, there is no Legendre transform
on these variables and the Hamiltonian reads

Heff = P+φ̇+ + P−φ̇− +
N∑

i=1

piθ̇
0
i − Leff (55)

=
P 2

+

2NA2
+ω

2
+

+
P 2−

2NA2−ω2−
+

N∑
i=1

p0
i
2

2

+N

[
M0

1x
2 +M0

1y
2

2
+M0

1ya+ω
2
+ −M0

1xa−ω
2
−

+
(
A2

+ + a2
+

) ω4
+

2
+
(
A2

− + a2
−
) ω4

−
2

]
. (56)

In the absence of conjugate variables of the amplitudes
A±, the corresponding Hamilton’s equation are simply
given, from the least action principle, by ∂A±Heff = 0.
Together with equations (54), this leads to the following
expressions for the frequencies

dφ±
dt

= ω±, (57)

as expected from the previous study of the matrix T, and
for the amplitudes

A2
± =

P±
Nω3±

· (58)

Fig. 9. The diamonds present the evolution of the main fre-
quency versus time for N = 200 particles of the original
Hamiltonian (1). We have superimposed not only ω+ (dashed
line) and ω− (solid line) using equations (48), but also the
numerically computed |M2| (dotted line). We clearly see the
exchange of frequency when |M2| touches zero.

Finally, from the equations ∂a±Heff = 0, we find

a+ = −M
0
1y

ω2
+

and a− =
M0

1x

ω2−
· (59)

Reintroducing expressions (58) and (59) in the
Hamiltonian (56), we end up with the effective Hamilto-
nian describing the slow motion of the particles

Heff =
∑

i

p0
i
2

2
+ P+ω+ + P−ω−. (60)

The evolution of the full system is then approximated by
the dynamics of this effective Hamiltonian, the constant
P+ and P− being determined by the initial conditions.
However, a difficulty arises when the two eigenvalues cross,
i.e. when |M2| becomes 0. Since ψ is defined as half the
phase of the complex numberM2x+iM2y, it experiences at
this point a π/2 jump, and consequently the eigenvectors
X± are inverted: this phenomenon of eigenvalue crossing
is illustrated by Figure 9.

However, in most of the numerical experiments con-
ducted in [5], only one fast frequency, ω− was excited.
From now on, we will therefore concentrate on the case
P+ = 0, and we will not be concerned by the phenomenon
of eigenvalue crossing. Dropping the subscript for P , we
consider the Hamiltonian

Heff =
∑

i

p0
i
2

2
+ P

√
1 − |M2|

2
· (61)

The corresponding equations of motion are

θ̈i = − P

N
√

2
√

1 − |M2|
sin 2 (θi + ψ) , (62)
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Fig. 10. Comparison between the numerical (triangles) and
analytical (solid line for ω− given by Eq. (48)) frequency of
oscillations. Comparison between the numerical (circles) and
analytical (solid line for Eq. (58)) amplitude ε of oscillation.
e = 3.6 × 10−5 and tmax = 1500.

which have to be compared with equation (19): this is
again a pendulum equation, but the amplitude of the
potential depends now self consistently on the particles
motion through M2, which explains the presence of un-
trapped particles, shown in Figure 5b. In addition, we
have now the correct expression for the frequency of the
fast oscillations ω = ω−, and a new conserved quantity
has been identified: the adiabatic invariant P . Using equa-
tion (58), we obtain the A−(M2) relation which, together
with ω(M2), is perfectly verified by numerical simulation
as shown in Figure 10.

The full efficiency of this procedure is that it pre-
serves completely the Hamiltonian structure of the prob-
lem, making it well suited for the statistical treatment that
we present below. However, it is important to emphasize
that, since all fast variables have disappeared, this pro-
cedure induces a huge gain (of order 1/ε) in numerical
simulations. This allows to study accurately the statis-
tics and the dynamics of this effective Hamiltonian up to
extremely long times, obtaining conclusions which are di-
rectly relevant to the original model.

4.3 Study of the effective Hamiltonian

4.3.1 Statistical mechanics of the effective Hamiltonian

We would like to describe the bicluster as an equilibrium
state of the effective Hamiltonian (61). Fortunately, due
to the special form of the potential, which depends only
on the global variable |M2|, the statistical mechanics of
the effective Hamiltonian is exactly tractable in the mi-
crocanonical ensemble. We could also use the canonical
ensemble, which gives in this case equivalent results, but

this is less convenient to compare with numerical simula-
tions, that are performed at constant energy.

There are two conserved quantities: the total energy E
and the total angular momentum. As the latter only cre-
ates a global rotation of the system totally decoupled from
the rest of the dynamics, we can consider the total energy
without restriction. The density of states Ω(E) at a given
energy, written as an integral in which the energy is split
in two parts, a kinetic and a potential one, has the follow-
ing expression

Ω(E) =
∫

dV Ωkin(E − V )Ωpot(V )

∝
∫

d|M2|√
1 − |M2|

Ωkin (E − V (|M2|)) Ωconf (|M2|) (63)

where we have neglected an irrelevant constant. Ωkin

(resp. Ωpot) is the density of states corresponding to the
kinetic (resp. potential) part of the Hamiltonian, and
Ωconf is the density of angular configuration giving rise
to a given |M2|. Since the potential only depends on |M2|,
Ωpot(V ) is directly proportional to Ωconf(|M2|). Their
expressions are

Ωkin(E) =
∫ +∞

−∞

∏
i

dpi δ

(
1
2

∑
i

p2
i − E

)
(64)

Ωconf (|M2|) =
∫ 2π

0

∏
i

dθi δ


 1
N

(∑
i

cos 2θi

)2

+
1
N

(∑
i

sin 2θi

)2

−N |M2|2

 . (65)

Using the classical result for a perfect gas, we obtain

Ωkin(E) =
2πN/2

Γ (N/2 + 1)
EN/2. (66)

To compute Ωconf(|M2|), it is possible to use the inverse
Laplace transform of the Dirac delta function

δ(x) =
∫

Γ

dp epx, (67)

where Γ is a path in the complex plane running from
	(p) = −∞ to 	(p) = +∞. The expression of Ωconf

becomes

Ωconf(|M2|) =
∫

Γ

dp e−Np|M2|2
∫ 2π

0

∏
i

dθi eNpM2
2 . (68)

To compute the integral over the angles, we use now the
Hubbard-Stratanovich transformation

eNpm2 ∝
∫ +∞

−∞
du e−N u2

4p +Nmu.
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This decouples the integration over the angles θi, and we
have

Ωconf ∝
∫

Γ

dp e−Np|M2|2
∫

du dv e−
N
4p (u2+v2)

∫ 2π

0

∏
i

dθi exp

(∑
i

u cos 2θi + v sin 2θi

)
(69)

∝
∫

Γ

dp e−Np|M2|2
∫ ∞

0

rdre−
Nr2
4p I0(r)N (70)

where r is the polar radius associated with u and v, and
I0 is the modified Bessel function of zero order. Using the
saddle point method on p and r, we have finally

Ωconf (|M2|) ∝ e−N
�

p∗|M2|2+ r∗2
4p∗ −ln I0(r∗)

�
(71)

= e−N(2p∗|M2|2−ln I0(r∗)) (72)

where p∗ and r∗ are implicitly defined by

r∗

2p∗
=

d ln I0(r)
dr |r∗

(73)

r∗2

4p∗2 = |M2|2. (74)

Using this result, equation (63) may be evaluated once
again by the saddle point method, which leads after some
simple algebra to the equilibrium value |M2|∗, defined by
the following equation

r∗(|M2|∗) =
1

4
√

1 − |M2|∗
(√

2E
P

−
√

1 − |M2|∗
) ·

(75)

As shown in Figure 12, this equation has only one solution
for any ratio E/P ; this indicates an absence of phase tran-
sition. As this solution is non zero, a biclusterization will
always take place; nevertheless in the large energy limit
the particles are almost free and |M2|∗ goes of course to
zero. Let us note in addition, that numerical simulations
corresponding to several initial conditions lead to values
of |M∗

2 | in excellent agreement with the theoretical pre-
diction (see Fig. 12).

Once |M2|∗ is known, it is easy to complete the de-
scription of the equilibrium state. The temperature T is
given by

T =
2
N

〈Ec〉 =
2
N

〈
E − P

√
1 − |M2|∗

2

〉
· (76)

The distribution of velocities is a Maxwellian with tem-
perature T , and the distribution of angles has a Gibbsian

shape ρ(θ) ∝ e−V (θ)/T with the potential

V (θ) =
P

N2
√

2
√

1 − |M2|∗
(1 − cos(2θ + 2ψ)) , (77)

which can also be inferred from the equations of mo-
tion (62).

4.3.2 Relaxation to equilibrium

We have therefore now a complete description of the statis-
tical equilibrium states of the effective Hamiltonian, gov-
erned by long range interactions. It has been noticed by
various authors that the dynamics of such systems may
sustain long lived metastable states before relaxing to
equilibrium [2,3,27,28]. Before comparing the “effective
equilibrium” with the structure created by the dynamics
of the real Hamiltonian, it is thus necessary to study the
relaxation to equilibrium. As the relaxation properties of
long range interacting systems is in itself an important
problem, we will consider them now. We will in addition
illustrate which statistical properties of the equilibrium
distribution is expected to be observed in the real dynam-
ics, for large N and on time scale reasonable for numerical
computations.

Figure 13 illustrates the approach to equilibrium of the
effective Hamiltonian, for three different particle numbers,
with initially immobile and homogeneously distributed
particles (this corresponds to the typical initial condition
used for the original Hamiltonian in [2,5] for instance).
We have represented 〈M2n〉(τ), the time averages of M2n

from initial time 0 to time τ , for n equal to 1, 2 and 3.
Temporal fluctuations are thus not visible. We first ob-
serve finite size effects concerning the equilibrium values:
for instance M6 converges for the small system N = 200
to a value larger than M�

6 , the equilibrium value.
More interestingly, we observe also that whereas |M2|

quickly reaches its equilibrium value, the relaxation time
of the successive moments |M4|, |M6| strongly depends on
the system size, and presumably diverges with N . The ac-
tual dependence of the relaxation time of each moment,
on the particle number, will not be studied in this paper.
It would for instance address the issue of whether non
equilibrium distributions may be observed in the thermo-
dynamic limit. Such phenomena have indeed already been
observed in other long range interacting systems [27,29].

We conclude that for a large, but finite, particle num-
ber, the moments of the distribution converge toward their
equilibrium values. When N increases, the relaxation time
for the high order moments may however be larger than
computationally achievable times, and we thus expect the
simulation to exhibit very slowly evolving non equilibrium
structures of the effective Hamiltonian. Authors of [5] have
indeed found a distribution of particles different from the
Gibbsian shaped distribution (77) predicted by the equi-
librium thermodynamics of the effective Hamiltonian (see
Fig. 8).
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Fig. 11. Spatio-temporal evolution of 50 particles. Re-
sults given by the original Hamiltonian (1) (resp. effective
Hamiltonian (60)) with (resp. without) the fast small oscilla-
tions superimposed: they are almost indistinguishable. The ini-
tial condition corresponds to particles that are initially evenly
distributed on the circle and have sinusöıdally modulated mo-
menta. The energy density is e = 2.5 × 10−5.

Fig. 12. Statistical prediction of the dynamical indicator |M2|
as a function of the ratio between the energy E and the adia-
batic invariant P . The solid curve shows the theoretical predic-
tion, whereas the filled circles correspond to numerical results
for the full Lagrangian.

On the contrary our analysis shows that |M2| quickly
reaches its equilibrium value |M2|∗. For this reason, given
the computational time achievable, in the next section, we
only use this statistical equilibrium indicator for the study
of the structure. This will lead to the correct prediction of
the equilibrium repartition of potential and kinetic energy,
and of its dependence on initial conditions.

Fig. 13. Relaxation towards equilibrium of the first three even
moments 〈M2n〉 (time averaged) according to numerical simu-
lations of the effective Hamiltonian (61). The solid (resp. dot-
ted and dashed) lines corresponds to results for N = 200 (resp.
N = 800 and N = 3200) particles. 〈M2〉, 〈M4〉 and 〈M6〉
are represented from top to bottom (〈M2n〉 is a decreasing
function of n). They converge towards the equilibrium values
M�

2 = 0.510, M�
4 = 0.144 and M�

6 = 0.028.

4.4 Comparison with the full Hamiltonian

If both time scales are clearly separated, Figure 11 em-
phasizes the striking agreement between the effective and
the real dynamics, for short times. We will show in this
section that the effective Hamiltonian also provides a good
description for the long time dynamics.

For this purpose, we will first compare the evolution
of the non-equilibrium angular density distribution ρ(θ)
for both the original and the effective dynamics. The re-
sults are reported in Figure 14 where circles show the
repartition given by the original Hamiltonian (1) whereas
the dashed line shows the results of the effective dynam-
ics (61). This picture clearly emphasizes that the non equi-
librium character of the dynamics is fully described by the
effective dynamics, and we can easily conclude that the ef-
fective Hamiltonian reflects very well the dynamics of the
real Hamiltonian.

As discussed in the previous section, according to the
computational times used, only the second moment of the
distribution M2 should correspond to the equilibrium one.
Let us therefore analyze the dependence of the equilib-
rium value of M2 on the initial conditions. The typically
used initial condition for the numerical simulations in the
original system (1) is an initially quasi homogeneous dis-
tribution of particles with zero velocity [5]. It corresponds
to the ratio E/

√
2P = 1 for the effective Hamiltonian.

According to Figure 12 , this implies an equilibrium value
|M2|∗ � 0.51 in perfect agreement with the numerical re-
sult reported earlier [5].

From these results, it is also possible to explain the
caloric curve T � 1.3 e, reported earlier [5]. The total
energy of the full system is divided in three parts: the
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Fig. 14. Comparison of the angular density distribution ρ(θ)
of particles obtained with the original Hamiltonian (1) (rep-
resented with circles) and with the effective one (61) (repre-
sented with the dashed line). Both results have been obtained
for N = 103 particles and are averaged on intermediate times,
corresponding to τ = 103 → 104. The energy of the original
Hamiltonian is e = 2.5 × 10−5.

potential energy of the small oscillations, the kinetic en-
ergy of the small oscillations and the kinetic energy of
the slow motion. The first two parts are equal on average
and form the potential part of the effective Hamiltonian,
whereas the last one is the kinetic energy of the effective
Hamiltonian. Using this remark together with the values
of E/P and |M2|∗ at equilibrium, it is easy to derive the
temperature/energy relationship, using (76). In the case
investigated in [5], we find precisely T = 1.3 e.

We thus conclude that the dynamics of the effective
Hamiltonian parametrizes very well the dynamics of the
real Hamiltonian, for short as well as for long time. This
allows us to predict statistical properties of the initial sys-
tem, as for instance the asymptotic value of M2 or the
partitioning between kinetic and potential energy. More-
over, let us recall that the effective Hamiltonian gives the
opportunity to study numerically the relaxation towards
equilibrium of the bicluster, whereas it was not possible
in the real dynamics, because of computational limitations
(let us note that the ratio of the typical time scale of the
two dynamics is of order 100 or larger).

All these findings are great successes of this approach.
Let us nevertheless comment some points that we have
not yet addressed.

The first one concerns the limit of validity of our mul-
tiple time scale analysis. It should be noticed that not
all initial conditions with small energy would lead to the
formation of the bicluster. From our analysis, we can con-
clude that the class of initial conditions leading to this
formation is the one compatible with the ansatz used:
however a precise description of this class is not known.
In particular, we have not studied the threshold value of ε
beyond which such a description breaks down. For ε going

towards one, the ansatz (41) will first lead to a nonlinear
evolution of the slow variable fi in place of the linear one
given by equation (46). We think that the critical value
εc above which this nonlinear dynamics do not have any
more periodic solution should correspond to the critical
value above which the bicluster cannot form, explaining
the transition observed in [5]. Such an hypothesis should
be tested.

A second point is the phenomenon of level crossing dis-
cussed in Section 4.2, leading to an exchange of excitation
of the two modes of the system. This phenomenon is very
similar to level crossing in quantum mechanics adiabatic
problems. It represents a resonance, local in time, in which
an interaction between the various modes may occur, lead-
ing to a modification of the adiabatic invariant. For the
sake of simplicity, we have concentrated our attention on
the case where only the smallest frequency is excited, so
that such level crossing could not occur. A more general
study would however be of interest.

The last point concerns the validity of our approach
for infinite times. As noted in the introduction, a recent
paper [6] has shown a long-time degradation of the biclus-
ter, for a very small number of particles, suggesting its
transient non-equilibrium nature in that case. For a rea-
sonable number of particles, our numerical results show
that such a degradation does not exist, for computation-
ally achievable times. This point is thus not addressable
numerically. From a theoretical point of view, results on
much simpler systems show that adiabatic invariants as
described here, should be conserved for a very long time
(exponential when ε goes to 0). Moreover, such very long
time stability results would not give any hint on what
happens for larger times.

5 Conclusion

The surprising formation and stabilization [5] of the bi-
cluster in the HMF dynamics, in contradiction with statis-
tical mechanics predictions, is now understood: the small
collective oscillations of the bulk of particles create an ef-
fective double-well potential, in which the particles evolve.

On a first stage the dynamics can be described in the
context of a forced Burgers’ equation. The caustics of the
trajectories of the particles form infinite density regions
explaining an initially diverging density. Early times dy-
namics is therefore very similar to the structure forma-
tion in Eulerian coordinates for a one dimensional self-
gravitating system [30]. As in this case, because of the
confining potential, the particles can not move apart as
easily after the first caustic has been formed, as in the
case of the free motion on the plane [30].

On much larger timescales, in order to parametrize the
fast oscillations of the bulk particles, we have performed a
variational multiscale analysis. We then have obtained an
effective Hamiltonian model that describes very well the
slow motion. This description is in very good agreement
with the initial dynamics. The effective dynamics allows
numerical simulations on time scale much larger than the



590 The European Physical Journal B

initial dynamics, as the rapid oscillations have been fil-
tered out. We have solved the statistical mechanics of this
new system. The results give a statistical explanation of
the bicluster formation and stabilization. The equilibrium
properties can then explain the mean value of the second
moment of the distribution and the repartition between
potential and kinetic energy. Even if this analysis has only
been sketched in this paper, the effective dynamics is also
a powerful tool to study the very slow relaxation process
towards the true equilibrium.

Many physical systems share the main properties of
this HMF dynamics: very fast oscillations self interacting
with a slower motion. In addition to the plasma problem
already cited and always in the context of long range in-
teracting systems, we may for instance cite the problem of
interaction of fast inertia gravity waves with the vortical
motion, for the rotating Shallow Water or the primitive
equation dynamics, in the limit of a small Rossby Num-
ber [31]. The main interest of our study is to provide a toy
model in which such a complex dynamics can be treated
and analyzed extensively using powerful theoretical tools.
We point out in particular the usefulness of a variational
approach in the procedure of averaging the rapid oscil-
lations. This toy model also permits a clear view of the
usual problems of such dynamics
(i) Resonances (or level crossing) in averaging procedures
(ii) Unusual relaxation processes due to the long range
nature of the interactions.
The HMF model is to our knowledge the simplest one in
which such phenomena occur. The study of these phenom-
ena is thus a natural extension of our work and should be
of interest in analyzing more complex systems.
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Appendix A: Variational description
of a simple adiabatic dynamics

Let us consider a slowly modulated harmonic oscillator
with Lagrangian

L(θ̇, θ, t, τ) =
θ̇2

2
− ω2(τ)

θ2

2
(78)

where τ = εt. We consider the following ansatz

θ(t, τ) = A(τ) sinϕ(t) (79)

with ϕ̇ = O(1) and Ȧ = εdA/dτ , but, contrary to the
usual asymptotic expansion on the equation of motion,
we will consider the variational approach proposed by
Witham [26]. The idea is to separate the two different

time scales of the motion at the level of the action. The
average of the fast variable t yields the following effective
Lagrangian:

L = 〈L〉t =
A2

4
(
ϕ̇2 − ω2

)
. (80)

It is thus straightforward to obtain the equation of motion
of the effective Lagrangian L(A, Ȧ, ϕ, ϕ̇). They read

d
dt

(
∂L
∂Ȧ

)
=
∂L
∂A

(81)

d
dt

(
∂L
∂ϕ̇

)
=
∂L
∂ϕ

(82)

i.e.

0 = A
(
ϕ̇2 − ω2

) ⇒ ϕ̇ = ω (83)

d
dt

(
A2ϕ̇

2

)
= 0 ⇒ A2ϕ̇ = const. (84)

This method emphasizes a new constant of the motion
A2ϕ̇, called adiabatic invariant, which may be of great in-
terest in complex systems. Moreover, this invariant neces-
sarily appears as the angle φ associated to the fast variable
t is always cyclic after averaging. The same reasoning also
apply for larger order ansatzs, showing that an adiabatic
invariant should exist at any order in ε.

This method preserves the Hamiltonian character of
the problem allowing for instance a statistical mechanics
treatment as presented in this paper.

Appendix B: Eigenvalues and eigenvectors
of the matrix T

To solve the linear second order equation (46), we need
to diagonalize the Nth-order circulant matrix T defined
by Tij = cos(θi − θj)/N . We introduce the two vectors
X(ψ) and Y(ψ), with coordinates Xi(ψ) = cos(θi + ψ)
and Yi(ψ) = sin(θi + ψ), and ψ an arbitrary phase. T is
therefore the sum of the projections along these vectors

T =
1
N

(
X(ψ)tX(ψ) + Y(ψ)tY(ψ)

)
. (85)

This proves that the image of T is of dimension two, and
that only two eigenvalues λ± are nonzero. Let us restrict
now to the two dimensional problem in the V ect(X,Y)
plane (this plane does not depend on ψ of course), and let
us choose ψ such that X and Y are orthogonal, i.e.

(X · Y) =
∑

i

cos(θi + ψ) sin(θi + ψ) = 0. (86)

This definition of ψ leads to

|M2| =
1
N

∑
i

cos(2θi + 2ψ). (87)
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Once we have the two eigenvectors X+ = X(ψ) and
X− = Y(ψ), their associated eigenvalues are defined by
the following relationship, valid ∀i:

∑
j

1
N

cos(θi − θj)X±i = λ±X±i. (88)

leading directly to

λ± =
1 ± |M2|

2
· (89)
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17. S. McNamara, W.R. Young, Phys. Fluids A 5, 34 (1993)
18. H. Jauslin, H.O. Kreiss, J. Moser, Proceedings of Symposia

in Pure Mathematics 65, 133 (1999)
19. W.R. Young, Lectures “Granular Media”, Nonlinear

Waves Semester, organized by S. Fauve, Y. Pomeau (In-
stitut Henri Poincaré, 1994-1995)
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